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Abstract—Recommendations for actions included in a Clin-
ical Practice Guideline (CPG) provide a reference framework
for medical experts during diagnostic processes. To support
the implementation of these recommendations, we propose
an interactive decision support. In order to realize this, the
diagnostic processes in the CPGs of Mantle Cell Lymphoma
(MCL) and Multiple Myeloma (MM) are formalized using
activities of the Unified Modeling Language (UML). Based
on UML activities, a Bayesian Network is generated. The
resulting models enable an assistance function allowing for
patient specific CPG recommendations and subsequently for
a suitable as well as personalized diagnosis embedded in an
interactive Decision Support System (DSS).
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I. INTRODUCTION

Modern medicine offers very diverse approaches for diag-
nosis, which are rapidly evolving through intensive research.
As a result, there is a huge amount of publications – e.g.
a search in Pubmed using the term “multiple myeloma
diagnosis” yields about 23.000 results [1]. For a decision
maker a profound inquiry concerning a specific topic can
therefore be extremely time consuming. Moreover, it is
becoming increasingly difficult for an individual healthcare
professional to keep his or her knowledge up-to-date and
identify suitable diagnostic options for a patient by hand
[2].

Clinical Practice Guidelines (CPGs) incorporate consoli-
dated medical expertise which is condensed into general rec-
ommendations of actions. High quality CPGs are proposed
by groups of experts considering the current state of the art
[3]. As a result, for an individual medical practitioner, CPGs
open up a reference framework for contemporary diagnostic
actions [4]. Especially for physicians who practice outside
major oncology centers, CPGs can be a valuable source of
knowledge. A distribution of CPGs by print media (passive
dissemination) has proven to have only little effect on actual
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Fig. 1. The figure shows the stages of a Clinical Practice Guideline (CPG).
First, the recommendations are developed by an expert team. In a second
step they are disseminated. However, there is a gap between the theoretical
knowledge (given by the CPG) and the practical actions performed by the
medical practitioner. A Decision Support System (DSS) can help to bridge
this gap and lower the barriers of CPG implementation. Modified from [5].

practitioners behavior [6] [7]. Therefore, we propose an
interactive decision support (cf. Fig. 1) during the diagnostic
process to bridge the gap between theoretical knowledge and
practical solutions [5].

In this contribution we elaborate a formalization of CPGs
concerning Mantle Cell Lymphoma (MCL) and Multiple
Myeloma (MM) using activities of the Unified Modeling
Language (UML). Based on this, a Bayesian Network (BN)
is generated in order to provide actual decision support in
context of a Decision Support System (DSS).

II. METHODOLOGY

There are two major challenges when exploiting CPGs
for a DSS in context of diagnostic processes. Firstly, a CPG
typically incorporates descriptions of diagnostic processes in
form of continuous texts, tables and diagrams (i.e. unstruc-
tured data). Consequently, in order to be accessible for a
technical system, the knowledge contained therein must be
properly formalized. Secondly, based on the formalization, a
decision support suitable for the current diagnostic process
and the patient on hand has to be provided.

Regarding the first challenge, providing a proper formal-
ization of a diagnostic process, we propose a framework
which takes advantage of a dialog between experts of the



medical and the technical domain (cf. Fig. 2): together
they develop a formalization based on a UML activity.
Alternatively, because of the easy comprehensibility of a
UML activity, a medical expert can formalize or modify
a CPG by him- or herself. We believe that by the latter,
possible barriers of CPG implementation, like the fear of
paternalism or regimentation, can be reduced [5]. This is an
important aspect regarding the acceptance and subsequently
the actual use of a DSS in daily medical practice in order to
bridge the gap between theoretical knowledge and practical
solutions (cf. Fig. 1).

To address the second challenge, i.e. providing a suit-
able decision support with respect to the current boundary
conditions (diagnostic process, patient, etc.), we propose a
BN (cf. Fig. 2) which models the probability of the pres-
ence of a disease under consideration. Based on previously
obtained examination values, next examination values are
proposed regarding both: the reduction of uncertainty about
the presence of the disease as well as the sequence of
actions proposed by the guideline. This allows for natural
deviations from a CPG, which are necessary for its proper
implementation in daily practice [4].

III. RELATED WORK

The use of UML activities as starting point for the devel-
opment of other models is, e.g., elaborated in [9], [10], [11].
In [12], [13] and [14] a transformation of a UML activity
into a Petri Net is considered. Thereby the comprehensibility
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Fig. 2. A CPG can be transferred into a UML activity of the corresponding
diagnostic algorithm. Formalization can be carried out by a dialog of experts
or by the medical expert him- or herself. The resulting activity serves as an
interface to a Bayesian Network (BN) which is used to carry out the actual
decision support. In this work, we introduce translation rules, automatically
transferring a given UML activity into a BN. Modified from [8].

of UML activities are linked to an abundance of analysis
techniques provided by Petri Nets.

In [4], [5] we introduced a semi-automatic transla-
tion from UML activities of the diagnostic processes of
Myelodysplastic Syndromes (MDS) and Chronic Myeloid
Leukemia (CML) into a BN. In this paper, we extend our
approach and focus on an automatic translation of UML
activities into a BN on the application example of MCL,
as well as MM. Diagnoses of these cancerous diseases are
complex and have therefore, to the best of our knowledge,
not been formalized and made accessible with the elaborated
level of detail for an interactive DSS so far.

IV. FUNDAMENTALS ON UML ACTIVITIES

The use of UML is accepted in academia and industry
worldwide [15], [16]. UML activities are among the be-
havioral diagrams – i.e. they are suitable to represent the
proceeding of a particular algorithm or process [17]. They
have been chosen as a basis for formalization because they
are easy to understand for medical and technical experts [5].
Thereby, the comprehensibility of the workflow representa-
tion is a necessary precondition for the expert-based dialog
and for the interpretation by a medical expert by him- or
herself (cf. Sec. II).

A UML activity consists of different notation elements
(shapes) which can be connected by the use of directed
edges. I.e., this allows for the modeling of sequences,
concurrency, decision and iteration [15]. Fig. 3 shows pro-
totypical interconnections which appear in the CPGs of
MM and MCL as well as other diseases with complex
diagostic processes [5]. Thereby a black dot symbolizes the
start of an activity (initial node) whereas the double circle
represents the end of an activity (activity final). Rounded
rectangles represent the individual actions of the workflow

  Activity 3  Activity 2  Activity 1

A

a)

B

A B
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[z > 1] [z <= 1]

A B

c)

Fig. 3. Three typical routings of the CPG models of MM and MCL. In
Subfigure a) the actions A and B are carried out sequentially whereas in
Subfig. b) these actions can be performed in any arbitrary order. Subfig. c)
depicts a decision depending on an expression (guard) which, if evaluated
to true, enables the transition to the target of the directed edge (next action).
I.e. if the value of a variable z is greater than 1, action A is performed, if
not, action B.



whereas possible flows are given by arcs. The black bars
used in Subfig. 3b) are concurrency nodes with different
characteristics: the first black bar forks possible flows (fork
node) whereas the subsequent black bar joins them (join
node). In Subfig. 3c) the diamonds represent branch nodes
which can be further divided into decision and merge nodes.
Furthermore, Fig. 4 depicts the flow of objects, which are
represented by rectangles. The abbreviated form of an object
flow is a pin, cf. Activity 5 in Subfig. 4b).

V. MODELING OF THE DIAGNOSTIC PROCESS

Fig. 5 shows the diagnostic process for MM. Due to the
size of the model, the figure is simplified and important parts
of the UML activity are emphasized by magnifiers.

Subfig. 5a) shows a sequence of actions that can be carried
out right after the activity starts. The first action, Suspicion of
MM, is an important precondition since the CPGs considered
are diseases specific. I.e. a CPG of cancerous diseases
generally starts with a suspicion for the disease under consid-
eration [5]. The second action is H&P (History and Physical
Examination). During H&P the medical practitioner, e.g.
asks a patient if he feels bone pain. Therefore, the object
Bone Pain is a result of the action H&P – whereby a pin
notation [18] is used to specify the output of an action.
Thereby an action can have several output or input pins.
E.g., the third action, Blood Count, generates (just as H&P)
several specific outputs.

Subfig. 5b) depicts the action Verify MM. This action
includes an evaluation: The practitioner must decide whether
or not the examination results confirm the disease. However,
there are no fixed rules and the final decision lies with the
medical expert [5]. Therefore, the decision as to whether a
disease is present or not is not modeled deterministically
(i.e., not by fixed rules). Instead, the medical practitioner is
provided with the probability of the disease under considera-
tion being present, given the present values. To facilitate the
evaluation of this probability, the input pins of the action
are extended by tuples consisting of two numbers. Each
of them specifies how likely it is to observe an untypical
examination value for patients having or not having the
disease, respectively.

  Activity 4 (cutout)

A Y [(0.5, 0.3)]

  Activity 5 (cutout)

A Y [(0.5, 0.3)]

a) b)

Fig. 4. Subfig. a) depicts an object flow that occurs before action A is
carried out. The object itself is represented by a rectangle. Subfig. b) shows
an alternative representation of the same fact: A small rectangle, a so-called
pin, is drawn at the edge of the action icon.

Subfig. 5c) shows another action: Calculate MM Phase.
In contrast to the action Verify MM, this action involves
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Fig. 5. This figure shows the diagnosis process of MM formalized as a
UML activity. Essential parts of the diagram are emphasized (magnifiers).
First, in Subfig. a), there is a sequential order of actions. E.g. H&P (History
and Physical Examination) and Blood Count. An object flow is indicated
by the output pins – e.g. Bone Pain is an object which results from H&P.
In Subfig. b) input pins are shown, since the corresponding action (here:
Verify MM) depends on the objects as input parameters – same applies to
Subfig. c).



a deterministic decision. That means, this decision can be
made on basis of fixed rules [5]. E.g., the type of MM can
be derived from formulas. For simplification, the diagnostic
process of MCL is not shown because it is 2-3 times the size
of the depicted diagram. Nevertheless, the same assumptions
apply to it.

VI. FUNDAMENTALS ON BAYESIAN NETWORKS

Medicine is one of many well researched fields for the
application of BNs [19]. In terms of medical diagnostic pro-
cesses, they are suitable because they can handle uncertainty
and incomplete data. In particular they allow for calculating
the probability of the presence of a diseases on basis of
fragmentary (i.e. incomplete) examinations entailing uncer-
tainty. A BN is a probabilistic graphical model. Therefore a
BN over random variables X0:N = X0, . . . , XN is given by
a tuple

B = (P,G) .

Whereby P is a joint probability distribution

P(X0:N ) =

N∏
n=0

P(Xn |Pa(Xn)) ,

and
G = (V, E) ,

corresponds to a directed, acyclic graph (DAG) [20], [21],
[22]. DAG G, also known as the structure of a BN, is
used to define dependencies between random variables X0:N .
Thereby, the vertex set V represents the set of random
variables. While a directed edge Vk → Vm within the set
of edges E represents a direct dependency between two
variables, the independence of two variables is symbolized
by a missing edge [8].

Whereas”BNs provide a good tradeoff between complex-
ity and expressiveness to a knowledge engineer, the formal
representation of a BN is not well suited for a joint dialog of
a technical and a medical domain expert. Furthermore, the
construction and modification of a BN by the medical expert
him- or herself seems not to be feasible. Consequently, we
propose rules, transferring a comprehensible UML activity
into a BN.”

VII. MODELING APPROACH

Given a UML activity represented as a graph U = (N, F),
the set of nodes N can be divided into different sets given
by [5]: ”

• A: Set of action nodes,
• B: Set of decision and merge nodes (branch nodes),
• C: Set of fork and join nodes (concurrency nodes),
• I, ω: Set of initial node, set of final nodes,
• O: Set of object nodes.

Thereby, a node that is part of one of the sets B, C,I, E is
called a control node. The set of object nodes O is given by

the set of data pins. Furthermore, the set F of activity edges
is given by ”

• Fcontrol: Control flow, i.e. activity edges linking control
nodes and actions, as well as edges between themselves.

• Fobject: Object flow, i.e. activity edges linking object
nodes and actions or linking object nodes and control
nodes.

A. Structure

Formally, the translation [[U]] of a UML activity U to
the network structure G of the BN B is given by:”

[[(N, F)]] = (V, E),

using”

V = vr ∪ {ei | (ei, ej) ∈ Fobject, ei ∈ O,

ej ∈ A : ej .contains(“Verify”} , (1)
E = {(vr, ei) | (ei, ej) ∈ Fobject, ei ∈ O,

ej ∈ A : ej .contains(“Verify”)} . (2)

In (1) a root node vr, representing the presence of a disease
is added to the set of vertices V of DAG G. Furthermore,
input pins of actions which include a kind of assessment,
represented by the keyword Verify, are added to the set of
vertices as well. Please note, that an object with an identical
name (e.g. as input of different actions) is correctly added
to the set only once, due to the fact that a ∪{a, b} = {a, b}.
Same applies to actions, therefore we assume that actions of
the UML activity have a unique name.

Since a specific disease causes typical examination results,
there is a directed edge from the root node to the relevant
examination values (2). This causal interpretation of an edge
normally reflects the expert’s understanding and is therefore
advantageous for an expert-based parametrization.

B. Parametrization

Besides the structure, the parameters of the BN have to
be specified. Let Xn be the random variables associated to
nodes vn ∈ V . We define

Val(Xn) = {0, 1} ,

using n = 0, . . . , N with N = |V |. Thereby Val(·) denotes
the set of values an associated random variable can take.
I.e., for all variables a Bernoulli distribution is used and
the associated nodes vn are binary-valued. The a-priori
probability of a disease being present is set to π = (0.5, 0.5)
to represent a maximum of uncertainty of the diagnosis.

Let Oname be the set of unique input pin names associated
with an action containing the keyword Verify. We define a
surjective function g : O → Oname. This function returns the
name of a given object node o. We define another, bijective
function h : Oname → {1, . . . , N}, with N = |Oname |. By
function h, a unique natural number is assigned to each
element of Oname.



To specify the underlying conditional probability distribu-
tion for each examination, we define a matrix Bk for each
element oname ∈ Oname:

∃! Bk ∀ oname ∈ Oname : k = h(oname).

The elements bk
i, j+1 of each matrix Bk are given by

bki+1, j+1 =

{
P(Xk = 1|X0 = i), if j = 1
1 − P(Xk = 1|X0 = i), otherwise,

where Xk with k = 1, . . . , N are random variables asso-
ciated with examination value k, and X0 is the random
variable representing the (non) presence of a disease. The
indices i + 1, j + 1 of the matrix Bk are given such that
i ∈ Val(X0) = {0, 1}, and j ∈ Val(Xk) = {0, 1}. The
conditional probabilities P(Xk = j |X0 = i) are derived from
the state of the object nodes. Each node o ∈ O is associated

with a tuple of probability values
(
o.probm

)2

m=1
and

P(Xk = 1|X0 = i) = o.probi+1

∀(o, a) ∈ Fobject with a ∈ A, o ∈ O, (h ◦ g)(o) = k .

Given the presented annotations and translation rules, a UML
activity can be automatically translated into a BN.

C. Decision Support

In [4] we introduced a decision support approach consid-
ering the current boundary conditions (diagnostic process,
patient, etc.). On the basis of previously obtained exami-
nation values, next examination values are proposed, both
in terms of reducing uncertainty about the presence of the
disease and in terms of the sequence of actions proposed in
the guideline. This allows for natural deviations from CPG
recommendations, which is a necessary precondition for its
proper implementation in daily practice [4]. For example, if
the guideline states that a CT scan must be performed, but
the patient is pregnant, the doctor must act accordingly, even
if this is not explicitly stated in the guideline.

For the reduction of uncertainty about the (non-) presence
of a disease under consideration, the diagnostic node plays
an important role: the more the probability mass scatters over
the states “present” or “not present” of the corresponding
random variable, the more uncertainty exists about the
presence or absence of the disease.

A measure of the uncertainty of a random variable is
given by its entropy [5], [23]. The more the probability mass
scatters over the states of the random variable the higher the
entropy is. Let X0 be a discrete random variable with n states
x0

1, . . . x0
n and P(X0) the probability distribution. The entropy

(in bit) is then given by [23]:

H(X0) = −

n∑
i=1

P(x0
i ) log2 P(x0

i ) , (3)

Fig. 6. Figure shows the entropy of the diagnostic node of MM versus the
order examinations for different values of α. For simplification, different
values are grouped.

where H(X0) ∈ [0, log2(n)]. Furthermore, the mutual infor-
mation

I(X0, X1) = H(X0) − H(X0 |X1) (4)

represents the reduction in the uncertainty of X0 due to the
knowledge of X1.”If there are several possible examinations
X i with i = 1 . . . N that can be performed, one would prefer
the one with the highest mutual information (i.e. highest
reduction of uncertainty about X0).” Given a BN with a node
representing the random variable X0, the entropy H(X0) can
be calculated by formula (3).

The conditional entropy H(X0 |X i) is defined as [23]:

H(X0 |X i) :=
n∑
j=1

P(X i = xij)H(X
0 |X i = xij) , (5)

where j = 1 . . . n are the states of random variable X i . In
daily practice, the choice of an examination based solely
on Eq. (4) is not possible. E.g.,using”that would mean that
an examination that is very specific for a disease would
be suggested first, regardless of whether this examination
is highly invasive or expensive which may outweigh its
diagnostic benefit”[5]. To take the costs (e.g. invasiveness)
into account, the order of the examinations listed in the
recommendations of the CPG is used: For example, at the
beginning of the diagnostic process, the proposed exams
are typically less invasive than at the end of the diagnostic
process, when the physician is more confident that a disease
is present or not.

Therefore, in [5] we propose a weighted reduction of un-
certainty which integrates cost-benefit considerations during
the diagnostic process:

Recommendationi = (1 − α)(1 − di/m) + α I(X0, X i) , (6)

where di is the depth of examination in the CPG associated
with X i , m is the overall depth of the CPG, and α is



Table I
PATIENT WITH SUSPECTED MM (α = 0).

No. Depth Examination Entropy

0 0 - 1
1 1 History & Physical Positive 0.995727452
2 2 CBC, differential, platelet count Positive 0.913661787
3 3 Serum BUN Positive 0.585156990
4 3 Serum LDH, beta-2 microglobulin Positive 0.293209343
5 3 Serum quant., SPEP, SIFE Positive 0.259543321
6 3 Serum free light chain (FLC) assay Positive 0.229109565
7 4 Plasma cell FISH Positive 0.055779575
8 4 Plasma cell proliferation Positive 0.005413689
9 5 24-h urine protein, UPEP, UIFE Positive 0.006144079

10 6 Whole body low-dose CT scan Positive 0.000507863
11 7 Whole body MRI/PET-CT Positive 0.000037310
12 8 Tissue biopsy Positive 0
13 9 Staining of marrowfor amyloid Negative 0

the weight factor. For α = 0 the recommendations follow
exactly the order given by the CPG (considering only cost)
– for α = 1 only the reduction of uncertainty is considered
(considering only diagnostic benefit).

VIII. RESULTS

For verification, typical patients regarding cancer statistics
of MM and MCL are generated [24]. Fig. 6 shows the
progress of the entropy for the diagnostic node of MM
versus the sequence of examinations. Please note that for
simplification the examination values are grouped. While
more examination values are assessed, the entropy drops
slowly by following the CPG recommendation (solid black
line). At the last examinations, the entropy reaches the value
of 0. That is, because a tissue biopsy, which is one of the late
(and highly invasive) examinations, is regarded as confirming
the disease for sure (cf. Tab. I).

The black dotted line depicts the progress of entropy
while the DSS is maximizing the reduction of uncertainty
in each step (i.e. α = 1). Consequently, invasive and risky
examinations are proposed first, because they can reduce
uncertainty the most [5]. In our case, tissue biopsy is
proposed first, which reduces the entropy to 0 at once.
Instead of considering either diagnostic benefit (α = 1)
or costs (α = 0), the DSS can be parametrized with
α ∈ (0, 1). This allows for balancing both aspects. E.g.
for α = 0.5, Plasma Cell Proliferation is assessed first,
allowing for a moderate reduction of uncertainty with respect
to invasiveness (dashed gray line). At the same time, an
early and natural deviation from the CPG is possible. For
α = 0.25, the recommendations are stronger bound to the
CPG, but also allowing for some deviations in step 7 and
8. This is because the assessment of Plasma Cells in step 7
and 8 is a strong indicator for the (non) presence of MM.

Figure 7 shows the progress of entropy versus examination
values for the diagnosis of MCL. Please note that for
simplification only 19 characteristic examination values in

Fig. 7. Entropy of the diagnstic node of MCL versus the order of
examination values. For simplification only 19 characteristic examination
values in two consecutive depths are shown.

two consecutive depths are shown (cf. Tab. II). The solid
black lines depicts how the entropy decreases while more
examination values are assessed in the order proposed by
the CPG (α = 0). The examinations are listed in Tab. II.
The dashed black line shows the progress of entropy while
in each step only the reduction of uncertainty is considered
(α = 1). Consequently, highly specific examinations like
immunohistochemical staining of cyclin D1 antibodies are
proposed first. Using α = 0.25, a natural deviation from the
CPG model is possible. E.g. the examination of cyclin D1
is proposed in an earlier step while other examinations are
proposed later according to the CPG.

Table II
PATIENT WITH SUSPECTED MCL (α = 0).

No. Depth Examination value Entropy

0 0 - 1
1 5 Hematop. Review of Lymphnode Positive 0.985228136
2 5 Immunphenotyping IHC: CD20 Positive 0.962900415
3 5 Immunphenotyping IHC: CD5 Positive 0.862371528
4 5 Immunphenotyping IHC: CD10 Negative 0.763337690
5 5 Immunphenotyping IHC: CD23 Negative 0.364989518
6 5 Immunphenotyping IHC: CycD1 Positive 0.037070557
7 5 Immunphenotyping IHC: BCL6 Negative 0.031222027
8 6 Immunphenotyping FLW: CD20 Positive 0.026975342
9 6 Immunphenotyping FLW: CD19 Positive 0.022288263

10 6 Immunphenotyping FLW: CD200 Positive 0.022288263
11 6 Immunphenotyping FLW: CD5 Positive 0.014994722
12 6 Immunphenotyping FLW: CD10 Negative 0.011189228
13 6 Immunphenotyping FLW: kappa/lambda Positive 0.011189228
14 6 Immunphenotyping FLW: CD23 Negative 0.003442625
15 6 t(11;14) Negative 0.003442625
16 6 t(14;18) Negative 0.002548508
17 6 Immunohistochem.: LEF1 Negative 0.001640160
18 6 Immunohistochem.: SOX Positive 0.000211186
19 6 Immunohistochem.: IGHV-Mut Negative 0.000122914



Fig. 8. User interface of the DSS.

Fig. 8 shows an exemplary graphical user interface of
the proposed DSS. In the upper part of the application,
the entropy and the probability of the (non) presence of
the disease under consideration is shown. The parameter α
can be adjusted using a slider – the proposed examination
value are sorted accordingly. Regarding the acceptation of
this concept by the end-user, further investigations will be
carried using a currently developed software system for the
treatment of cancerous diseases.

IX. SUMMARY AND CONCLUSION

In this work, we presented a framework for a decision
support system (DSS) for the diagnostics of the cancer-
ous diseases Mantle Cell Lymphoma (MCL) and Multiple
Myeloma (MM). Given previous examination results, our
DSS is able to propose next examinations tailored to the
current boundary conditions (diagnostic process, patient,
etc.). The medical practitioner can choose between exam-
inations to balance invasiveness as well as the reduction of
uncertainty about the (non) presence of a disease.

Since Clinical Practice Guidelines (CPGs) contain con-
densed and consolidated medical knowledge about the di-
agnostics of the complex cancerous diseases of interest, our
approach integrates this knowledge by formalizing it using
UML activity diagrams. In a first step, the UML activities
serve as a basis for the dialogue between medical and tech-
nical domain experts being easily understandable for both.
In a second step, the UML activities are automatically trans-
lated into Bayesian Networks which are able to model the
probability of the (non) presence of the respective cancerous
disease. We showed the translation rules and validated the
decision support based on the generated Bayesian Networks.

Given the comprehensibility and easy adaptability of
UML activities, our framework could serve as a starting
point for formalizing not only the diagnostics of MCL and

MM, but also other complex diseases. With our automatic
translation into probabilistic models, decision support during
diagnostics of other cancerous diseases is feasible.
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